112 research outputs found

    Seeing what we know and understand

    Get PDF
    Expertise in object recognition, as in bird watching or X-ray specialization, is based on extensive perceptual experience and in-depth semantic knowledge. Although it has been shown that rich perceptual experience shapes elementary perception and higher level discrimination and identification, little is known about the influence of in-depth semantic knowledge on object perception and identification. By means of recording event-related brain potentials (ERPs), we show that the amount of knowledge acquired about initially unfamiliar objects modulates visual ERP components already 120 msec after object presentation, and causes gradual variations of activity in similar brain systems within a later timeframe commonly associated with meaning access. When perceptual analysis is made more difficult by blurring object pictures, knowledge has an even stronger effect on perceptual analysis and facilitates recognition. These findings demonstrate that in-depth knowledge not only affects involuntary semantic memory access, but also shapes perception by penetrating early visual processes traditionally held to be immune to such influences.Peer Reviewe

    Is perception cognitively penetrable? A philosophically satisfying and empirically testable reframing

    Get PDF
    The question of whether perception can be penetrated by cognition is in the limelight again. The reason this question keeps coming up is that there is so much at stake: Is it possible to have theory-neutral observation? Is it possible to study perception without recourse to expectations, context, and beliefs? What are the boundaries between perception, memory, and inference (and do they even exist)? Are findings from neuroscience that paint a picture of perception as an inherently bidirectional and interactive process relevant for understanding the relationship between cognition and perception? We have assembled a group of philosophers and psychologists who have been considering the thesis of cognitive (im)penetrability in light of these questions (Abdel Rahman & Sommer, 2008; Goldstone, Landy, & Brunel, 2011; Lupyan, Thompson-Schill, & Swingley, 2010; Macpherson, 2012; Stokes, 2011). Rather than rehashing previous arguments which appear, in retrospect, to have been somewhat ill-posed (Pylyshyn, 1999), this symposium will present a thesis of cognitive (im)penetrability that is at once philosophically satisfying, empirically testable, and relevant to the questions that cognitive scientists find most interesting

    Picture-Induced Semantic Interference Reflects Lexical Competition during Object Naming

    Get PDF
    With a picture–picture experiment, we contrasted competitive and non-competitive models of lexical selection during language production. Participants produced novel noun–noun compounds in response to two adjacently displayed objects that were categorically related or unrelated (e.g., depicted objects: apple and cherry; naming response: “apple–cherry”). We observed semantic interference, with slower compound naming for related relative to unrelated pictures, very similar to interference effects produced by semantically related context words in picture–word-interference paradigms. This finding suggests that previous failures to observe reliable interference induced by context pictures may be due to the weakness of lexical activation and competition induced by pictures, relative to words. The production of both picture names within one integrated compound word clearly enhances lexical activation, resulting in measurable interference effects. We interpret this interference as resulting from lexical competition, because the alternative interpretation, in terms of response-exclusion from the articulatory buffer, does not apply to pictures, even when they are named

    Experience-driven meaning affects lexical choices during language production

    Get PDF
    The role of meaning facets based on sensorimotor experiences is well investigated in comprehension but has received little attention in language production research. In two experiments, we investigated whether experiential traces of space influenced lexical choices when participants completed visually presented sentence fragments (e.g., “You are at the sea and you see a . . .”) with spoken nouns (e.g., “dolphin,” “palm tree”). The words were presented consecutively in an ascending or descending direction, starting from the centre of the screen. These physical spatial cues did not influence lexical choices. However, the produced nouns met the spatial characteristics of the broader sentence contexts such that the typical spatial locations of the produced noun referents were predicted by the location of the situations described by the sentence fragments (i.e., upper or lower sphere). By including distributional semantic similarity measures derived from computing cosine values between sentence nouns and produced nouns using a web-based text corpus, we show that the meaning dimension of “location in space” guides lexical selection during speaking. We discuss the relation of this spatial meaning dimension to accounts of experientially grounded and usage-based theories of language processing and their combination in hybrid approaches. In doing so, we contribute to a more comprehensive understanding of the many facets of meaning processing during language production and their impact on the words we select to express verbal messages.Peer Reviewe

    The time course of semantic richness effects in visual word recognition

    Get PDF
    The richness of semantic representations associated with individual words has emerged as an important variable in reading. In the present study we contrasted different measures of semantic richness and explored the time course of their influences during visual word processing as reflected in event-related brain potentials (ERPs). ERPs were recorded while participants performed a lexical decision task on visually presented words and pseudowords. For word stimuli, we orthogonally manipulated two frequently employed measures of semantic richness: the number of semantic features generated in feature-listing tasks and the number of associates based on free association norms. We did not find any influence of the number of associates. In contrast, the number of semantic features modulated ERP amplitudes at central sites starting at about 190 ms, as well as during the later N400 component over centro-parietal regions (300–500 ms). Thus, initial access to semantic representations of single words is fast and word meaning continues to modulate processing later on during reading

    Internet-based language production research with overt articulation: Proof of concept, challenges, and practical advice

    Get PDF
    Language production experiments with overt articulation have thus far only scarcely been conducted online, mostly due to technical difficulties related to measuring voice onset latencies. Especially the poor audiovisual synchrony in web experiments (Bridges et al. 2020) is a challenge to time-locking stimuli and participants’ spoken responses. We tested the viability of conducting language production experiments with overt articulation in online settings using the picture–word interference paradigm – a classic task in language production research. In three pre-registered experiments (N = 48 each), participants named object pictures while ignoring visually superimposed distractor words. We implemented a custom voice recording option in two different web experiment builders and recorded naming responses in audio files. From these stimulus-locked audio files, we extracted voice onset latencies offline. In a control task, participants classified the last letter of a picture name as a vowel or consonant via button-press, a task that shows comparable semantic interference effects. We expected slower responses when picture and distractor word were semantically related compared to unrelated, independently of task. This semantic interference effect is robust, but relatively small. It should therefore crucially depend on precise timing. We replicated this effect in an online setting, both for button-press and overt naming responses, providing a proof of concept that naming latency – a key dependent variable in language production research – can be reliably measured in online experiments. We discuss challenges for online language production research and suggestions of how to overcome them. The scripts for the online implementation are made available.Humboldt-Universität zu Berlin (1034)Peer Reviewe

    Brain Oscillations and Functional Connectivity during Overt Language Production

    Get PDF
    In the present study we investigate the communication of different large scale brain sites during an overt language production task with state of the art methods for the estimation of EEG functional connectivity. Participants performed a semantic blocking task in which objects were named in semantically homogeneous blocks of trials consisting of members of a semantic category (e.g., all objects are tools) or in heterogeneous blocks, consisting of unrelated objects. The classic pattern of slower naming times in the homogeneous relative to heterogeneous blocks is assumed to reflect the duration of lexical selection. For the collected data in the homogeneous and heterogeneous conditions the imaginary part of coherency (ImC) was evaluated at different frequencies. The ImC is a measure for detecting the coupling of different brain sites acting on sensor level. Most importantly, the ImC is robust to the artifact of volume conduction. We analyzed the ImC at all pairs of 56 EEG channels across all frequencies. Contrasting the two experimental conditions we found pronounced differences in the theta band at 7 Hz and estimated the most dominant underlying brain sources via a minimum norm inverse solution based on the ImC. As a result of the source localization, we observed connectivity between occipito-temporal and frontal areas, which are well-known to play a major role in lexical-semantic language processes. Our findings demonstrate the feasibility of investigating interactive brain activity during overt language production
    corecore